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1 Inner Products of Symmetric Functions

1.1 Inner products involving hλ, mλ, and eλ

Last time, we proved a Cauchy identity for pλ:∑
λ

pλ(x)pλ(y)

zλ
= Ω[XY ] =

∏
i,j

1

1− xiyj

Let’s prove a Cauchy identity for hλ and mλ.

Proposition 1.1.

Ω[XY ] =
∑
λ

hλ(x)mλ(y)

Proof. The coefficient of mλ(y) in the expression
∏
i,j(1 − xiyj)

−1 is the coefficient of

yλ1yλ2 · · · yλ` in the expression
∏
j

(∏
i(1− xiyj)−1

)
. This inner term isH(yj) =

∑
hn(x)ynj ,

so we get the product hλ1(x)hλ2(x) · · ·hλ`(x) = hλ(x).

This shows that 〈hλ,mµ〉 = δλ,µ.

Proposition 1.2. The map ω : Λ→ Λ is an isometry.

Proof. Apply ω to 〈pλ, pµ〉.

〈ω(pλ), ω(pµ)〉 = ε(σλ)ε(σµ) 〈pλ, pµ〉 = ε(σλ)ε(σµ)δλ,µ = δλ,µ = 〈pλ, pµ〉 .

Since the power sum symmetric functions form a basis for Λ, we are done.

Applying ω to 〈hλ,mµ〉 = δλ,µ gives us that 〈eλ, ω(mµ)〉 = δλ,µ. Denoting the coefficient
of the term mµ as 〈mµ〉, we also have 〈hλ, hµ〉 = 〈mµ〉hλ = bλ,µ = bµ,λ.
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1.2 Inner products of hλ and pµ

Let V be a H-module, where H ⊆ G. We can construct CG⊗CH V , which is a CG module,
where x⊗ ay = xa⊗ y if a ∈ H.

Definition 1.1. Let V be a H-module, where H ⊆ G. The induced character χ ↑GH is the
character of CG⊗CH V .

Evaluating this character in general requires a bit of work involving coset representatives
gi of cosets gh ∈ G/H that permute basis elements vi of V . Instead, we will focus on a
very simple case. Let V be the trivial representation, so we get CG⊗CH C. Tensoring over
CH makes gh⊗ 1 = g ⊗ h(1) = g ⊗ 1. Then this is isomorphic to C(G/H).

Let Sλ = Sλ1 × Sλ2 × · · · × Sλk , thought of as a subset of Sn, and define the character
1Sλ ↑Sn , where 1 is the trivial representation. Then 1Sλ ↑Sn= χC(Sn/Sλ). To evaluate
this character, note that the action of Sn on C(Sn/Sλ) is the same as the action of Sn
permuting the letters of words aλ11 a

λ2
2 · · · a

λ`
` (λ1 copies of the letter a1, etc.). Then

1Sλ ↑
Sn (σ) = number of words in aλ11 a

λ2
2 · · · a

λ`
` fixed by σ.

Proposition 1.3. Let F be the Frobenius characteristic map. Then

F (1Sλ ↑
Sn) = hλ.

Proof. We want to prove that
〈
F (1Sλ ↑Sn), pµ

〉
= 〈hλ, pµ〉 for each λ, µ. The former is

the same as
〈
1Sλ ↑Sn , δµ

〉
= 1Sλ ↑Sn (σµ) for σµ a permutation of Sn with cycle structure

µ = (µ1, . . . , µk). So as we argued before, this is the number of number of words in
letters aλ11 a

λ2
2 · · · a

λ`
` fixed by σµ. This amounts to mapping the indices µi to λj (via some

f : [k]→ [`]) such that
∑

i∈f−1({j}) µi = λj ; i.e. we count the number of refinements of the
partition λ to the partition µ.

hn =
∑
|λ|=n

pλ
zλ

= F (1Sλ ↑
Sn)

What about 〈hλ, pµ〉? Since 〈hλ,mµ〉 = δλ,µ, 〈hλ, pµ〉 =
〈
xλ
〉
pµ, the coefficient of mλ

in pµ. Finding this coefficient is the same process as earlier; if we are trying to map the xj
back to pµi where they came from, we are finding the number of mappings of the indices µi
to λj (via some f : [k]→ [`]) such that

∑
i∈f−1({j}) µi = λj . This completes the proof.

2 Antisymmetric functions

2.1 Antisymmetric functions and related partitions

We want to introduce the Schur functions, which will be another basis for the symmetric
functions. Instead of starting with a combinatorial definition, we’ll present a classical
definition in n variables first. We need some background.
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Definition 2.1. A function f(x1, . . . , xn) is antisymmetric if for any permutation σ ∈ Sn,
f(xσ(1), . . . , xσ(n)) = ε(σ)f(x1, . . . , xn).

If a monomial has two variables with the same power, then the transposition switching
those two variables will make the coefficient of the monomial equal to the negative of itself;
this makes the coefficient 0. So if you have a monomial with nontrivial stabilizer in Sn,
then it must have coefficient 0. This means that all antisymmetric functions must have
terms with exponents that correspond to partitions λ with no repeated λi.

Let ρ = (n − 1, n − 2, . . . , 1, 0), and let λ = (λ1 ≥ λ2 ≥ · · · ≥ λn). Then λ + ρ =
(λ1 + n − 1 > λ2 + n − 2 > · · · > λn) is a strictly decreasing sequence. Conversely, given
any strictly decreasing sequence, we can subtract ρ and get a weakly decreasing sequence.

2.2 Monomial antisymmetric functions and the Vandermonde determi-
nant

Definition 2.2. The monomial antisymmetric functions are aλ+ρ = xλ+ρ± similar terms
obtained by permuting the variables.

These are a basis for the antisymmetric functions, Z[x1, · · · , xn]ε. We can also express
them as

aλ+ρ =
∑
σ∈Sn

ε(σ)σ(xλ+ρ)

= det


x
(λ+ρ)1
1 x

(λ+ρ)2
1 · · · x

(λ+ρ)n
1

x
(λ+ρ)1
2 x

(λ+ρ)2
2 · · · x

(λ+ρ)n
2

...
...

...

x
(λ+ρ)1
n x

(λ+ρ)2
n · · · x

(λ+ρ)n
2

 .
Similarly, we can make the following definition.

Definition 2.3. The Vandermonde determinant is

aρ = det


xn−11 xn−21 · · · 1

xn−12 xn−22 · · · 1
...

...
...

xn−1n xn−2n · · · 1

 =
∏
i<j

(xi − xj).

Why does the 2nd equality hold? The left hand side is a multiple of the right hand side
because the left hand side is a polynomial that equals 0 whenever xi = xj for i 6= j. The
degrees are equal, so the left hand side must be a constant multiple c of the right; checking
the coefficient in front of a term shows that c = 1, so the two expression are equal.

In fact, any antisymmetric function is a multiple of the Vandermonde determinant
because it must be 0 whenever xi = xj for i 6= j.
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