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1 Inner Products of Symmetric Functions

1.1 Inner products involving h,, m,, and e,

Last time, we proved a Cauchy identity for py:
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Let’s prove a Cauchy identity for hy and m).
Proposition 1.1.

QXY= ha()ma(y)
X

Proof. The coefficient of m,(y) in the expression []; ;(1 — z;y;) " is the coefficient of

y M y*2 - yM in the expression I, (IT;(1 = @iy;)~"). This inner term is H(y;) = > hn(2)y7,
so we get the product hy, ()l (z) = @) = ha(2). O

This shows that (hy,m,) = 0 -
Proposition 1.2. The map w: A — A is an isometry.
Proof. Apply w to (px,ppu)-
(Wpx),w(pp)) = elor)e(ow) (Pavu) = €(0n)e(0u)0r 1 = Iau = (DA, D) -
Since the power sum symmetric functions form a basis for A, we are done. O

Applying w to (hx,m,) = 0, gives us that (ex,w(m,)) = 0y, Denoting the coeflicient
of the term m,, as (m,), we also have (hyx, h,) = (my) hx = by, = by



1.2 Inner products of h), and p,

Let V be a H-module, where H C G. We can construct CG ®cgy V', which is a CG module,
where t®ay =zra®yifa € H.

Definition 1.1. Let V be a H-module, where H C G. The induced character x Tg is the
character of CG ®cy V.

Evaluating this character in general requires a bit of work involving coset representatives
g; of cosets g, € G/H that permute basis elements v; of V. Instead, we will focus on a
very simple case. Let V' be the trivial representation, so we get CG ®cy C. Tensoring over
CH makes gh ® 1 = g ® h(1) = g ® 1. Then this is isomorphic to C(G/H).

Let S\ = Sy, x S, x --- x Sy, thought of as a subset of S,,, and define the character
1s, 197 where 1 is the trivial representation. Then 1s, An = XC(S,/Sy)- Yo evaluate
this character, note that the action of S, on C(S,/S)) is the same as the action of S,

permuting the letters of words ai\la§2 e a?é (A1 copies of the letter aj, etc.). Then

1s, 19" (¢) = number of words in a3 a)? - - -az\e fixed by o.
Proposition 1.3. Let F' be the Frobenius characteristic map. Then
F(]ISA TS") = hy.

Proof. We want to prove that <F(]lgA TS"),pM> = (ha,pyu) for each A, p. The former is
the same as <]lgA A5n, 5u> = 1g, 45n (0,) for o, a permutation of S,, with cycle structure
w = (1,...,pr). So as we argued before, this is the number of number of words in
letters ai‘la§‘2 e az\g fixed by o,. This amounts to mapping the indices p; to A; (via some
[+ [k] = [€]) such that 3¢ p—1 (53 i = Aj; i.e. we count the number of refinements of the
partition A to the partition pu.

DA s
=3 B = P, 50
2 (1s, 1)

What about (hy,p,)? Since (hx,mu) = oxpu, (hx,DPu) = <3:)‘>pu, the coefficient of m)
in p,. Finding this coefficient is the same process as earlier; if we are trying to map the x;
back to p,, where they came from, we are finding the number of mappings of the indices p;
to A; (via some f : [k] — [{]) such that > ;c 1((;y) #i = A;. This completes the proof. [

2 Antisymmetric functions

2.1 Antisymmetric functions and related partitions

We want to introduce the Schur functions, which will be another basis for the symmetric
functions. Instead of starting with a combinatorial definition, we’ll present a classical
definition in n variables first. We need some background.



Definition 2.1. A function f(z1,...,x,) is antisymmetric if for any permutation o € S,,,
f(xa(l)v s 7$U(n)) = E(O)f(xla s 7$n)'

If a monomial has two variables with the same power, then the transposition switching
those two variables will make the coefficient of the monomial equal to the negative of itself;
this makes the coefficient 0. So if you have a monomial with nontrivial stabilizer in S,
then it must have coefficient 0. This means that all antisymmetric functions must have
terms with exponents that correspond to partitions A with no repeated A;.

Let p = (n—1,n—2,...,1,0), and let A = (\; > Ao > -+ > ;). Then A+ p =
M+n—1>X+n—2>--->),) is a strictly decreasing sequence. Conversely, given
any strictly decreasing sequence, we can subtract p and get a weakly decreasing sequence.

2.2 Monomial antisymmetric functions and the Vandermonde determi-
nant

Definition 2.2. The monomial antisymmetric functions are a4, = 2 P+ similar terms
obtained by permuting the variables.

These are a basis for the antisymmetric functions, Z[z1,- - ,x,]°. We can also express
them as

xp = Z e(0)o(a*7)

gESy
x?-ﬂ)h x§/\+p)2 . $§/\+p)n
$gk+p)1 xéHp)z L xé/\er)n
= det ) ]

$$L)\+p)1 $£LA+p)2 L xg)\er)n
Similarly, we can make the following definition.
Definition 2.3. The Vandermonde determinant is
P PP |
xn—l xn—Q . 1

a, = det 2, 2, 0= H(fUz - zj).
. . . 1<j

pn—lopn=2 o

Why does the 2nd equality hold? The left hand side is a multiple of the right hand side
because the left hand side is a polynomial that equals 0 whenever z; = x; for i # j. The
degrees are equal, so the left hand side must be a constant multiple ¢ of the right; checking
the coefficient in front of a term shows that ¢ = 1, so the two expression are equal.

In fact, any antisymmetric function is a multiple of the Vandermonde determinant
because it must be 0 whenever x; = x; for ¢ # j.



