Math 249 Lecture 12 Notes

Daniel Raban

September 20, 2017

1 Inner Products of Symmetric Functions

1.1 Inner products involving h_{λ} , m_{λ} , and e_{λ}

Last time, we proved a Cauchy identity for p_{λ} :

$$\sum_{\lambda} \frac{p_{\lambda}(x)p_{\lambda}(y)}{z_{\lambda}} = \Omega[XY] = \prod_{i,j} \frac{1}{1 - x_{i}y_{j}}$$

Let's prove a Cauchy identity for h_{λ} and m_{λ} .

Proposition 1.1.

$$\Omega[XY] = \sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)$$

Proof. The coefficient of $m_{\lambda}(y)$ in the expression $\prod_{i,j}(1-x_iy_j)^{-1}$ is the coefficient of $y^{\lambda_1}y^{\lambda_2}\cdots y^{\lambda_\ell}$ in the expression $\prod_j \left(\prod_i (1-x_iy_j)^{-1}\right)$. This inner term is $H(y_j) = \sum_i h_n(x)y_j^n$, so we get the product $h_{\lambda_1(x)}h_{\lambda_2(x)}\cdots h_{\lambda_\ell(x)} = h_{\lambda}(x)$.

This shows that $\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda,\mu}$.

Proposition 1.2. The map $\omega : \Lambda \to \Lambda$ is an isometry.

Proof. Apply ω to $\langle p_{\lambda}, p_{\mu} \rangle$.

$$\langle \omega(p_{\lambda}), \omega(p_{\mu}) \rangle = \varepsilon(\sigma_{\lambda})\varepsilon(\sigma_{\mu}) \langle p_{\lambda}, p_{\mu} \rangle = \varepsilon(\sigma_{\lambda})\varepsilon(\sigma_{\mu})\delta_{\lambda,\mu} = \delta_{\lambda,\mu} = \langle p_{\lambda}, p_{\mu} \rangle.$$

Since the power sum symmetric functions form a basis for Λ , we are done.

Applying ω to $\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda,\mu}$ gives us that $\langle e_{\lambda}, \omega(m_{\mu}) \rangle = \delta_{\lambda,\mu}$. Denoting the coefficient of the term m_{μ} as $\langle m_{\mu} \rangle$, we also have $\langle h_{\lambda}, h_{\mu} \rangle = \langle m_{\mu} \rangle h_{\lambda} = b_{\lambda,\mu} = b_{\mu,\lambda}$.

1.2 Inner products of h_{λ} and p_{μ}

Let V be a H-module, where $H \subseteq G$. We can construct $\mathbb{C}G \otimes_{\mathbb{C}H} V$, which is a $\mathbb{C}G$ module, where $x \otimes ay = xa \otimes y$ if $a \in H$.

Definition 1.1. Let V be a H-module, where $H \subseteq G$. The induced character $\chi \uparrow_H^G$ is the character of $\mathbb{C}G \otimes_{\mathbb{C}H} V$.

Evaluating this character in general requires a bit of work involving coset representatives g_i of cosets $g_h \in G/H$ that permute basis elements v_i of V. Instead, we will focus on a very simple case. Let V be the trivial representation, so we get $\mathbb{C}G \otimes_{\mathbb{C}H} \mathbb{C}$. Tensoring over $\mathbb{C}H$ makes $gh \otimes 1 = g \otimes h(1) = g \otimes 1$. Then this is isomorphic to $\mathbb{C}(G/H)$.

Let $S_{\lambda} = S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_k}$, thought of as a subset of S_n , and define the character $\mathbbm{1}_{S_{\lambda}} \uparrow^{S_n}$, where $\mathbbm{1}$ is the trivial representation. Then $\mathbbm{1}_{S_{\lambda}} \uparrow^{S_n} = \chi_{\mathbb{C}(S_n/S_{\lambda})}$. To evaluate this character, note that the action of S_n on $\mathbb{C}(S_n/S_{\lambda})$ is the same as the action of S_n permuting the letters of words $a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_\ell^{\lambda_\ell}$ (λ_1 copies of the letter a_1 , etc.). Then

$$\mathbb{1}_{S_{\lambda}} \uparrow^{S_n} (\sigma) = \text{ number of words in } a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_{\ell}^{\lambda_{\ell}} \text{ fixed by } \sigma.$$

Proposition 1.3. Let F be the Frobenius characteristic map. Then

$$F(\mathbb{1}_{S_{\lambda}}\uparrow^{S_n})=h_{\lambda}.$$

Proof. We want to prove that $\langle F(\mathbb{1}_{S_{\lambda}} \uparrow^{S_n}), p_{\mu} \rangle = \langle h_{\lambda}, p_{\mu} \rangle$ for each λ, μ . The former is the same as $\langle \mathbb{1}_{S_{\lambda}} \uparrow^{S_n}, \delta_{\mu} \rangle = \mathbb{1}_{S_{\lambda}} \uparrow^{S_n} (\sigma_{\mu})$ for σ_{μ} a permutation of S_n with cycle structure $\mu = (\mu_1, \dots, \mu_k)$. So as we argued before, this is the number of number of words in letters $a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_{\ell}^{\lambda_{\ell}}$ fixed by σ_{μ} . This amounts to mapping the indices μ_i to λ_j (via some $f: [k] \to [\ell]$) such that $\sum_{i \in f^{-1}(\{j\})} \mu_i = \lambda_j$; i.e. we count the number of refinements of the partition λ to the partition μ .

$$h_n = \sum_{|\lambda|=n} \frac{p_{\lambda}}{z_{\lambda}} = F(\mathbb{1}_{S_{\lambda}} \uparrow^{S_n})$$

What about $\langle h_{\lambda}, p_{\mu} \rangle$? Since $\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda,\mu}$, $\langle h_{\lambda}, p_{\mu} \rangle = \langle x^{\lambda} \rangle p_{\mu}$, the coefficient of m_{λ} in p_{μ} . Finding this coefficient is the same process as earlier; if we are trying to map the x_j back to p_{μ_i} where they came from, we are finding the number of mappings of the indices μ_i to λ_j (via some $f:[k] \to [\ell]$) such that $\sum_{i \in f^{-1}(\{j\})} \mu_i = \lambda_j$. This completes the proof. \square

2 Antisymmetric functions

2.1 Antisymmetric functions and related partitions

We want to introduce the Schur functions, which will be another basis for the symmetric functions. Instead of starting with a combinatorial definition, we'll present a classical definition in n variables first. We need some background.

Definition 2.1. A function $f(x_1, ..., x_n)$ is antisymmetric if for any permutation $\sigma \in S_n$, $f(x_{\sigma(1)}, ..., x_{\sigma(n)}) = \varepsilon(\sigma) f(x_1, ..., x_n)$.

If a monomial has two variables with the same power, then the transposition switching those two variables will make the coefficient of the monomial equal to the negative of itself; this makes the coefficient 0. So if you have a monomial with nontrivial stabilizer in S_n , then it must have coefficient 0. This means that all antisymmetric functions must have terms with exponents that correspond to partitions λ with no repeated λ_i .

Let $\rho = (n-1, n-2, ..., 1, 0)$, and let $\lambda = (\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n)$. Then $\lambda + \rho = (\lambda_1 + n - 1 > \lambda_2 + n - 2 > ... > \lambda_n)$ is a strictly decreasing sequence. Conversely, given any strictly decreasing sequence, we can subtract ρ and get a weakly decreasing sequence.

2.2 Monomial antisymmetric functions and the Vandermonde determinant

Definition 2.2. The monomial antisymmetric functions are $a_{\lambda+\rho} = x^{\lambda+\rho} \pm \text{ similar terms}$ obtained by permuting the variables.

These are a basis for the antisymmetric functions, $\mathbb{Z}[x_1, \dots, x_n]^{\varepsilon}$. We can also express them as

$$a_{\lambda+\rho} = \sum_{\sigma \in S_n} \varepsilon(\sigma)\sigma(x^{\lambda+\rho})$$

$$= \det \begin{bmatrix} x_1^{(\lambda+\rho)_1} & x_1^{(\lambda+\rho)_2} & \cdots & x_1^{(\lambda+\rho)_n} \\ x_2^{(\lambda+\rho)_1} & x_2^{(\lambda+\rho)_2} & \cdots & x_2^{(\lambda+\rho)_n} \\ \vdots & \vdots & & \vdots \\ x_n^{(\lambda+\rho)_1} & x_n^{(\lambda+\rho)_2} & \cdots & x_2^{(\lambda+\rho)_n} \end{bmatrix}.$$

Similarly, we can make the following definition.

Definition 2.3. The Vandermonde determinant is

$$a_{\rho} = \det \begin{bmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ x_n^{n-1} & x_n^{n-2} & \cdots & 1 \end{bmatrix} = \prod_{i < j} (x_i - x_j).$$

Why does the 2nd equality hold? The left hand side is a multiple of the right hand side because the left hand side is a polynomial that equals 0 whenever $x_i = x_j$ for $i \neq j$. The degrees are equal, so the left hand side must be a constant multiple c of the right; checking the coefficient in front of a term shows that c = 1, so the two expression are equal.

In fact, any antisymmetric function is a multiple of the Vandermonde determinant because it must be 0 whenever $x_i = x_j$ for $i \neq j$.